Wednesday 11 October 2017

Bevegelige Gjennomsnittet Avkastning Excel


Flytte gjennomsnitts - og eksponensielle utjevningsmodeller Som et første skritt i å bevege seg ut over gjennomsnittlige modeller, kan tilfeldige gangmodeller og lineære trendmodeller, ikke-sone-mønstre og trender ekstrapoleres ved hjelp av en flytende gjennomsnitt eller utglattningsmodell. Den grunnleggende forutsetningen bak gjennomsnittlige og utjevningsmodeller er at tidsserien er lokalt stasjonær med et sakte varierende middel. Derfor tar vi et flytende (lokalt) gjennomsnitt for å anslå dagens verdi av gjennomsnittet, og deretter bruke det som prognosen for nær fremtid. Dette kan betraktes som et kompromiss mellom den gjennomsnittlige modellen og den tilfeldige-walk-uten-drift-modellen. Den samme strategien kan brukes til å estimere og ekstrapolere en lokal trend. Et glidende gjennomsnitt kalles ofte en quotsmoothedquot-versjon av den opprinnelige serien, fordi kortsiktig gjennomsnittsverdi medfører utjevning av støtene i den opprinnelige serien. Ved å justere graden av utjevning (bredden på det bevegelige gjennomsnittet), kan vi håpe å finne en slags optimal balanse mellom ytelsen til de gjennomsnittlige og tilfeldige turmodellene. Den enkleste typen gjennomsnittlig modell er. Enkel (likevektet) Flytende gjennomsnitt: Værvarselet for verdien av Y på tidspunktet t1 som er laget på tidspunktet t, er det enkle gjennomsnittet av de nyeste m-observasjonene: (Her og andre steder vil jeg bruke symbolet 8220Y-hat8221 til å stå for en prognose av tidsserien Y som ble gjort så tidlig som mulig ved en gitt modell.) Dette gjennomsnittet er sentrert ved period-t (m1) 2, noe som innebærer at estimatet av det lokale middel vil ha en tendens til å ligge bak den sanne verdien av det lokale gjennomsnittet med ca. (m1) 2 perioder. Således sier vi at gjennomsnittsalderen for dataene i det enkle glidende gjennomsnittet er (m1) 2 i forhold til perioden for prognosen beregnes. Dette er hvor lang tid det vil være å prognostisere prognoser bak vendepunkter i dataene . For eksempel, hvis du er gjennomsnittlig de siste 5 verdiene, vil prognosene være ca 3 perioder sent i å svare på vendepunkter. Merk at hvis m1, den enkle glidende gjennomsnittlige (SMA) modellen er lik den tilfeldige turmodellen (uten vekst). Hvis m er veldig stor (sammenlignbar med lengden på estimeringsperioden), svarer SMA-modellen til den gjennomsnittlige modellen. Som med hvilken som helst parameter i en prognosemodell, er det vanlig å justere verdien av k for å oppnå den beste kvote kvoten til dataene, dvs. de minste prognosefeilene i gjennomsnitt. Her er et eksempel på en serie som ser ut til å vise tilfeldige svingninger rundt et sakte varierende middel. Først kan vi prøve å passe den med en tilfeldig walk-modell, noe som tilsvarer et enkelt bevegelige gjennomsnitt på 1 sikt: Den tilfeldige turmodellen reagerer veldig raskt på endringer i serien, men i så måte velger den mye av kvotenivået i data (tilfeldige svingninger) samt quotsignalquot (det lokale gjennomsnittet). Hvis vi i stedet prøver et enkelt glidende gjennomsnitt på 5 termer, får vi et smidigere sett med prognoser: Det 5-tiden enkle glidende gjennomsnittet gir betydelig mindre feil enn den tilfeldige turmodellen i dette tilfellet. Gjennomsnittsalderen for dataene i denne prognosen er 3 ((51) 2), slik at den har en tendens til å ligge bak vendepunktene med tre perioder. (For eksempel ser det ut til at en nedtur har skjedd i perioden 21, men prognosene vender seg ikke til flere perioder senere.) Legg merke til at de langsiktige prognosene fra SMA-modellen er en horisontal rettlinje, akkurat som i tilfeldig gang modell. Således antar SMA-modellen at det ikke er noen trend i dataene. Mens prognosene fra den tilfeldige turmodellen ganske enkelt er lik den siste observerte verdien, er prognosene fra SMA-modellen lik et veid gjennomsnitt av de siste verdiene. De konfidensgrenser som beregnes av Statgraphics for de langsiktige prognosene for det enkle glidende gjennomsnittet, blir ikke større da prognoseperioden øker. Dette er åpenbart ikke riktig. Dessverre er det ingen underliggende statistisk teori som forteller oss hvordan konfidensintervallene skal utvide seg for denne modellen. Det er imidlertid ikke så vanskelig å beregne empiriske estimater av konfidensgrensene for lengre horisontprognoser. For eksempel kan du sette opp et regneark der SMA-modellen skulle brukes til å prognose 2 trinn foran, 3 trinn fremover, etc. i den historiske dataprøven. Du kan deretter beregne utvalgsstandardavvikene til feilene i hver prognosehorisont, og deretter konstruere konfidensintervaller for langsiktige prognoser ved å legge til og trekke ut multipler av riktig standardavvik. Hvis vi prøver et 9-sikt enkelt glidende gjennomsnitt, får vi enda jevnere prognoser og mer av en bremseeffekt: Gjennomsnittsalderen er nå 5 perioder (91) 2). Hvis vi tar et 19-årig glidende gjennomsnitt, øker gjennomsnittsalderen til 10: Legg merke til at prognosene nå faller bakom vendepunkter med ca 10 perioder. Hvilken mengde utjevning er best for denne serien Her er et bord som sammenligner feilstatistikken sin, også et gjennomsnitt på tre sikt: Modell C, 5-års glidende gjennomsnitt, gir den laveste verdien av RMSE med en liten margin over 3 term og 9-sikt gjennomsnitt, og deres andre statistikker er nesten identiske. Så, blant modeller med svært like feilstatistikk, kan vi velge om vi foretrekker litt mer respons eller litt mer glatt i prognosene. (Tilbake til toppen av siden.) Browns Simple Exponential Smoothing (eksponentielt vektet glidende gjennomsnitt) Den enkle glidende gjennomsnittsmodellen beskrevet ovenfor har den uønskede egenskapen som den behandler de siste k-observasjonene, like og fullstendig ignorerer alle foregående observasjoner. Intuitivt bør tidligere data diskonteres på en mer gradvis måte - for eksempel bør den siste observasjonen få litt mer vekt enn 2. siste, og den 2. siste skal få litt mer vekt enn den 3. siste, og så videre. Den enkle eksponensielle utjevning (SES) - modellen oppnår dette. La 945 betegne en quotsmoothing constantquot (et tall mellom 0 og 1). En måte å skrive modellen på er å definere en serie L som representerer dagens nivå (dvs. lokal middelverdi) av serien som estimert fra data til nå. Verdien av L ved tid t beregnes rekursivt fra sin egen tidligere verdi slik: Således er den nåværende glattede verdien en interpolering mellom den forrige glattede verdien og den nåværende observasjonen, hvor 945 styrer nærheten til den interpolerte verdien til den nyeste observasjon. Forventningen for neste periode er bare den nåværende glatte verdien: Tilsvarende kan vi uttrykke neste prognose direkte i forhold til tidligere prognoser og tidligere observasjoner, i en hvilken som helst av de tilsvarende versjoner. I den første versjonen er prognosen en interpolasjon mellom forrige prognose og tidligere observasjon: I den andre versjonen blir neste prognose oppnådd ved å justere forrige prognose i retning av den forrige feilen med en brøkdel av 945. Er feilen gjort ved tid t. I den tredje versjonen er prognosen et eksponentielt vektet (dvs. nedsatt) glidende gjennomsnitt med rabattfaktor 1-945: Interpolasjonsversjonen av prognoseformelen er den enkleste å bruke hvis du implementerer modellen på et regneark: det passer inn i en enkeltcelle og inneholder cellehenvisninger som peker på forrige prognose, forrige observasjon og cellen der verdien av 945 er lagret. Merk at hvis 945 1 er SES-modellen tilsvarer en tilfeldig turmodell (uten vekst). Hvis 945 0 er SES-modellen ekvivalent med den gjennomsnittlige modellen, forutsatt at den første glattede verdien er satt lik gjennomsnittet. (Gå tilbake til toppen av siden.) Gjennomsnittsalderen for dataene i prognosen for enkel eksponensiell utjevning er 1 945 i forhold til perioden for prognosen beregnes. (Dette skal ikke være åpenbart, men det kan enkelt vises ved å vurdere en uendelig serie.) Derfor har den enkle, glidende gjennomsnittlige prognosen en tendens til å ligge bak vendepunktene med rundt 1 945 perioder. For eksempel, når 945 0,5 lag er 2 perioder når 945 0.2 lag er 5 perioder når 945 0,1 lag er 10 perioder, og så videre. For en gitt gjennomsnittlig alder (det vil si mengden lag), er prognosen for enkel eksponensiell utjevning (SES) noe bedre enn SMA-prognosen (Simple Moving Average) fordi den legger relativt mer vekt på den siste observasjonen - dvs. det er litt mer quotresponsivequot for endringer som oppstod i den siste tiden. For eksempel har en SMA-modell med 9 vilkår og en SES-modell med 945 0,2 begge en gjennomsnittlig alder på 5 for dataene i prognosene, men SES-modellen legger mer vekt på de siste 3 verdiene enn SMA-modellen og ved Samtidig er det ikke 8220forget8221 om verdier som er mer enn 9 år gamle, som vist i dette diagrammet. En annen viktig fordel ved SES-modellen over SMA-modellen er at SES-modellen bruker en utjevningsparameter som er kontinuerlig variabel, slik at den lett kan optimaliseres ved å bruke en quotsolverquot-algoritme for å minimere den gjennomsnittlige kvadratfeilen. Den optimale verdien av 945 i SES-modellen for denne serien viser seg å være 0,2961, som vist her: Gjennomsnittsalderen for dataene i denne prognosen er 10,2961 3,4 perioder, noe som ligner på et 6-sikt enkelt glidende gjennomsnitt. De langsiktige prognosene fra SES-modellen er en horisontal rett linje. som i SMA-modellen og den tilfeldige turmodellen uten vekst. Vær imidlertid oppmerksom på at konfidensintervallene som beregnes av Statgraphics, divergerer nå på en rimelig måte, og at de er vesentlig smalere enn konfidensintervallene for den tilfeldige turmodellen. SES-modellen antar at serien er noe mer forutsigbar enn den tilfeldige turmodellen. En SES-modell er faktisk et spesielt tilfelle av en ARIMA-modell. slik at den statistiske teorien om ARIMA-modeller gir et solid grunnlag for beregning av konfidensintervall for SES-modellen. Spesielt er en SES-modell en ARIMA-modell med en ikke-sesongforskjell, en MA (1) og ikke en konstant periode. ellers kjent som en quotARIMA (0,1,1) modell uten constantquot. MA (1) - koeffisienten i ARIMA-modellen tilsvarer mengden 1-945 i SES-modellen. For eksempel, hvis du passer på en ARIMA (0,1,1) modell uten konstant til serien analysert her, viser den estimerte MA (1) - koeffisienten seg å være 0,7029, som er nesten nøyaktig en minus 0,2961. Det er mulig å legge til antagelsen om en konstant lineær trend uten null som en SES-modell. For å gjøre dette oppgir du bare en ARIMA-modell med en ikke-sesongforskjell og en MA (1) - sikt med en konstant, dvs. en ARIMA-modell (0,1,1) med konstant. De langsiktige prognosene vil da ha en trend som er lik den gjennomsnittlige trenden observert over hele estimeringsperioden. Du kan ikke gjøre dette i forbindelse med sesongjustering, fordi sesongjusteringsalternativene er deaktivert når modelltypen er satt til ARIMA. Du kan imidlertid legge til en konstant langsiktig eksponensiell trend for en enkel eksponensiell utjevningsmodell (med eller uten sesongjustering) ved å bruke inflasjonsjusteringsalternativet i prognoseprosedyren. Den aktuelle kvoteringskvoten (prosentvekst) per periode kan estimeres som hellingskoeffisienten i en lineær trendmodell som er montert på dataene i forbindelse med en naturlig logaritme transformasjon, eller det kan være basert på annen uavhengig informasjon om langsiktige vekstutsikter . (Tilbake til toppen av siden.) Browns Lineær (dvs. dobbel) Eksponensiell utjevning SMA-modellene og SES-modellene antar at det ikke er noen trend av noe slag i dataene (som vanligvis er OK eller i det minste ikke altfor dårlig for 1- trinnvise prognoser når dataene er relativt støyende), og de kan modifiseres for å inkorporere en konstant lineær trend som vist ovenfor. Hva med kortsiktige trender Hvis en serie viser en varierende vekstnivå eller et syklisk mønster som skiller seg tydelig ut mot støyen, og hvis det er behov for å prognose mer enn 1 periode framover, kan estimering av en lokal trend også være et problem. Den enkle eksponensielle utjevningsmodellen kan generaliseres for å oppnå en lineær eksponensiell utjevning (LES) modell som beregner lokale estimater av både nivå og trend. Den enkleste tidsvarierende trendmodellen er Browns lineær eksponensiell utjevningsmodell, som bruker to forskjellige glatte serier som er sentrert på forskjellige tidspunkter. Forutsigelsesformelen er basert på en ekstrapolering av en linje gjennom de to sentrene. (En mer sofistikert versjon av denne modellen, Holt8217s, blir diskutert nedenfor.) Den algebraiske form av Brown8217s lineær eksponensiell utjevningsmodell, som den enkle eksponensielle utjevningsmodellen, kan uttrykkes i en rekke forskjellige, men liknende former. Denne standardmodellen er vanligvis uttrykt som følger: La S betegne den enkeltglattede serien som er oppnådd ved å anvende enkel eksponensiell utjevning til serie Y. Dvs. verdien av S ved period t er gitt av: (Husk at, under enkle eksponensiell utjevning, dette ville være prognosen for Y ved periode t1.) Lad deretter Squot betegne den dobbeltslettede serien oppnådd ved å anvende enkel eksponensiell utjevning (ved hjelp av samme 945) til serie S: Endelig prognosen for Y tk. for noe kgt1, er gitt av: Dette gir e 1 0 (det vil si lure litt, og la den første prognosen være den samme første observasjonen) og e 2 Y 2 8211 Y 1. hvoretter prognosene genereres ved å bruke ligningen ovenfor. Dette gir de samme monterte verdiene som formelen basert på S og S dersom sistnevnte ble startet med S 1 S 1 Y 1. Denne versjonen av modellen brukes på neste side som illustrerer en kombinasjon av eksponensiell utjevning med sesongjustering. Holt8217s Lineær eksponensiell utjevning Brown8217s LES-modell beregner lokale estimater av nivå og trend ved å utjevne de siste dataene, men det faktum at det gjør det med en enkelt utjevningsparameter, stiller en begrensning på datamønstrene som den kan passe: nivået og trenden er ikke tillatt å variere til uavhengige priser. Holt8217s LES-modellen løser dette problemet ved å inkludere to utjevningskonstanter, en for nivået og en for trenden. Til enhver tid t, som i Brown8217s modell, er det et estimat L t på lokalt nivå og et estimat T t av den lokale trenden. Her beregnes de rekursivt fra verdien av Y observert ved tid t og de forrige estimatene av nivået og trenden ved to likninger som gjelder eksponensiell utjevning til dem separat. Hvis estimert nivå og trend ved tid t-1 er L t82091 og T t-1. henholdsvis, da var prognosen for Y tshy som ville vært gjort på tidspunktet t-1, lik L t-1 T t-1. Når den faktiske verdien er observert, beregnes det oppdaterte estimatet av nivået rekursivt ved å interpolere mellom Y tshy og dens prognose, L t-1 T t 1, med vekt på 945 og 1- 945. Forandringen i estimert nivå, nemlig L t 8209 L t82091. kan tolkes som en støyende måling av trenden på tidspunktet t. Det oppdaterte estimatet av trenden beregnes deretter rekursivt ved å interpolere mellom L t 8209 L t82091 og det forrige estimatet av trenden, T t-1. ved bruk av vekter av 946 og 1-946: Fortolkningen av trend-utjevningskonstanten 946 er analog med den for nivåutjevningskonstanten 945. Modeller med små verdier på 946 antar at trenden bare endrer seg veldig sakte over tid, mens modeller med større 946 antar at det endrer seg raskere. En modell med en stor 946 mener at den fjerne fremtiden er veldig usikker, fordi feil i trendberegning blir ganske viktig når det regnes med mer enn en periode framover. (Tilbake til toppen av siden.) Utjevningskonstantene 945 og 946 kan estimeres på vanlig måte ved å minimere gjennomsnittlig kvadratfeil i de 1-trinns prognosene. Når dette gjøres i Statgraphics, viser estimatene seg å være 945 0.3048 og 946 0.008. Den svært små verdien av 946 betyr at modellen tar svært liten endring i trenden fra en periode til den neste, så i utgangspunktet prøver denne modellen å estimere en langsiktig trend. I analogi med begrepet gjennomsnittlig alder av dataene som brukes til å estimere det lokale nivået i serien, er gjennomsnittsalderen for dataene som brukes til estimering av lokal trenden, proporsjonal med 1 946, men ikke akkurat lik den . I dette tilfellet viser det seg å være 10 006 125. Dette er et svært nøyaktig tall, forutsatt at nøyaktigheten av estimatet av 946 er virkelig 3 desimaler, men det er av samme generelle størrelsesorden som prøvestørrelsen på 100, så denne modellen er i gjennomsnitt over ganske mye historie i estimering av trenden. Prognoseplanet nedenfor viser at LES-modellen anslår en litt større lokal trend i slutten av serien enn den konstante trenden som er estimert i SEStrend-modellen. Også den estimerte verdien på 945 er nesten identisk med den som oppnås ved å montere SES-modellen med eller uten trend, så dette er nesten den samme modellen. Nå ser disse ut som rimelige prognoser for en modell som skal estimere en lokal trend. Hvis du 8220eyeball8221 ser dette, ser det ut som om den lokale trenden har vendt nedover på slutten av serien. Hva har skjedd Parametrene til denne modellen har blitt estimert ved å minimere den kvadriske feilen på 1-trinns prognoser, ikke langsiktige prognoser, i hvilket tilfelle trenden gjør ikke en stor forskjell. Hvis alt du ser på er 1-trinns feil, ser du ikke det større bildet av trender over (si) 10 eller 20 perioder. For å få denne modellen mer i tråd med øyehals ekstrapoleringen av dataene, kan vi manuelt justere trendutjevningskonstanten slik at den bruker en kortere basislinje for trendestimering. Hvis vi for eksempel velger å sette 946 0,1, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden 10 perioder, noe som betyr at vi gjennomsnittsverdi trenden over de siste 20 perioder eller så. Here8217s hva prognosen tomten ser ut hvis vi setter 946 0,1 mens du holder 945 0.3. Dette ser intuitivt fornuftig ut på denne serien, selv om det er sannsynlig farlig å ekstrapolere denne trenden mer enn 10 perioder i fremtiden. Hva med feilstatistikken Her er en modell sammenligning for de to modellene vist ovenfor, samt tre SES-modeller. Den optimale verdien av 945. For SES-modellen er ca. 0,3, men tilsvarende resultater (med henholdsvis litt mer responstid) oppnås med 0,5 og 0,2. (A) Holts lineær eksp. utjevning med alfa 0,3048 og beta 0,008 (B) Holts lineær eksp. utjevning med alfa 0,3 og beta 0,1 (C) Enkel eksponensiell utjevning med alfa 0,5 (D) Enkel eksponensiell utjevning med alfa 0,3 (E) Enkel eksponensiell utjevning med alfa 0,2 Deres statistikk er nesten identisk, slik at vi virkelig kan velge på grunnlag av 1-trinns prognosefeil i dataprøven. Vi må falle tilbake på andre hensyn. Hvis vi sterkt tror at det er fornuftig å basere dagens trendoverslag på hva som har skjedd i løpet av de siste 20 perioder eller så, kan vi gjøre en sak for LES-modellen med 945 0,3 og 946 0,1. Hvis vi ønsker å være agnostiker om det er en lokal trend, kan en av SES-modellene være enklere å forklare, og vil også gi mer mid-of-the-road prognoser for de neste 5 eller 10 periodene. (Tilbake til toppen av siden.) Hvilken type trend-ekstrapolering er best: Horisontal eller lineær Empirisk bevis tyder på at hvis dataene allerede er justert (om nødvendig) for inflasjon, kan det være uhensiktsmessig å ekstrapolere kortsiktig lineær trender veldig langt inn i fremtiden. Trender som tyder på i dag, kan løsne seg i fremtiden på grunn av ulike årsaker som forverring av produkt, økt konkurranse og konjunkturnedganger eller oppgang i en bransje. Av denne grunn utfører enkle eksponensielle utjevning ofte bedre ut av prøven enn det ellers kunne forventes, til tross for sin kvadratiske kvadratiske horisontal trend-ekstrapolering. Dampede trendmodifikasjoner av den lineære eksponensielle utjevningsmodellen brukes også i praksis til å introdusere en konservatismeddel i sine trendprognoser. Den demonstrede LES-modellen kan implementeres som et spesielt tilfelle av en ARIMA-modell, spesielt en ARIMA-modell (1,1,2). Det er mulig å beregne konfidensintervall rundt langsiktige prognoser produsert av eksponentielle utjevningsmodeller, ved å betrakte dem som spesielle tilfeller av ARIMA-modeller. (Pass på: ikke alle programmer beregner konfidensintervaller for disse modellene riktig.) Bredden på konfidensintervaller avhenger av (i) RMS-feilen i modellen, (ii) type utjevning (enkel eller lineær) (iii) verdien (e) av utjevningskonstanten (e) og (iv) antall perioder fremover du forutsetter. Generelt sprer intervallene raskere da 945 blir større i SES-modellen, og de sprer seg mye raskere når lineær snarere enn enkel utjevning brukes. Dette emnet blir diskutert videre i ARIMA-modellene i notatene. (Gå tilbake til toppen av siden.) Flytende gjennomsnitt - MA BREAKING DOWN Flytte gjennomsnittlig - MA Som et SMA-eksempel, vurder en sikkerhet med følgende lukkepriser over 15 dager: Uke 1 (5 dager) 20, 22, 24, 25, 23 Uke 2 (5 dager) 26, 28, 26, 29, 27 Uke 3 (5 dager) 28, 30, 27, 29, 28 En 10-dagers MA ville gjennomsnittlig sluttprisene de første 10 dagene som de første dataene punkt. Det neste datapunktet vil slippe den tidligste prisen, legge til prisen på dag 11 og ta gjennomsnittet, og så videre som vist nedenfor. Som nevnt tidligere lagrer MAs nåværende prishandling fordi de er basert på tidligere priser, jo lengre tidsperioden for MA, desto større er lagret. Dermed vil en 200-dagers MA ha en mye større grad av forsinkelse enn en 20-dagers MA fordi den inneholder priser for de siste 200 dagene. Lengden på MA å bruke, avhenger av handelsmålene, med kortere MA'er som brukes til kortvarig handel og langsiktig MAs som er mer egnet for langsiktige investorer. 200-dagers MA er mye etterfulgt av investorer og forhandlere, med brudd over og under dette bevegelige gjennomsnittet regnes som viktige handelssignaler. MAs gir også viktige handelssignaler på egen hånd, eller når to gjennomsnitt overgår. En stigende MA indikerer at sikkerheten er i en uptrend. mens en fallende MA indikerer at den er i en downtrend. På samme måte er oppadgående momentum bekreftet med en bullish kryssovergang. som oppstår når en kortsiktig MA krysser over en langsiktig MA. Nedadgående momentum er bekreftet med en bearish crossover, som oppstår når en kortsiktig MA krysser under en lengre sikt MA. Moving Averages: Hva er de Blant de mest populære tekniske indikatorene, er glidende gjennomsnitt brukt til å måle retningen av den nåværende trenden . Hver type bevegelige gjennomsnitt (vanligvis skrevet i denne opplæringen som MA) er et matematisk resultat som beregnes ved å beregne et antall tidligere datapunkter. Når det er bestemt, blir det resulterende gjennomsnittet plottet på et diagram for å tillate handelsmenn å se på glatt data, i stedet for å fokusere på de daglige prisfluktuasjonene som er iboende i alle finansmarkeder. Den enkleste formen for et bevegelige gjennomsnitt, riktig kjent som et enkelt glidende gjennomsnitt (SMA), beregnes ved å ta det aritmetiske gjennomsnittet av et gitt sett av verdier. For eksempel, for å beregne et grunnleggende 10-dagers glidende gjennomsnitt vil du legge til sluttkursene fra de siste 10 dagene, og deretter dele resultatet med 10. I figur 1 er summen av prisene for de siste 10 dagene (110) dividert med antall dager (10) for å komme fram til 10-dagers gjennomsnittet. Hvis en forhandler ønsker å se et 50-dagers gjennomsnitt i stedet, vil samme type beregning bli gjort, men det vil inkludere prisene i løpet av de siste 50 dagene. Det resulterende gjennomsnittet under (11) tar hensyn til de siste 10 datapunktene for å gi handelsmenn en ide om hvordan en eiendel er priset i forhold til de siste 10 dagene. Kanskje du lurer på hvorfor tekniske handelsfolk kaller dette verktøyet et bevegelige gjennomsnitt og ikke bare en vanlig gjennomsnitt. Svaret er at når nye verdier blir tilgjengelige, må de eldste datapunktene slippes fra settet og nye datapunkter må komme inn for å erstatte dem. Dermed går datasettet kontinuerlig til å regne for nye data etter hvert som det blir tilgjengelig. Denne beregningsmetoden sikrer at bare den nåværende informasjonen blir regnskapsført. I figur 2 flyttes den røde boksen (som representerer de siste 10 datapunktene) til høyre, og den siste verdien av 15 blir tapt fra beregningen når den nye verdien av 5 er lagt til settet. Fordi den relativt små verdien av 5 erstatter den høye verdien på 15, ville du forvente å se gjennomsnittet av datasettets reduksjon, som det gjør, i dette tilfellet fra 11 til 10. Hva ser Moving Averages Like Når verdiene til MA har blitt beregnet, de er plottet på et diagram og deretter koblet til for å skape en bevegelig gjennomsnittslinje. Disse svingete linjene er vanlige på diagrammer av tekniske handelsfolk, men hvordan de brukes kan variere drastisk (mer om dette senere). Som du kan se i figur 3, er det mulig å legge til mer enn ett glidende gjennomsnitt i et diagram ved å justere antall tidsperioder som brukes i beregningen. Disse svingete linjene kan virke distraherende eller forvirrende i begynnelsen, men du vil bli vant til dem når tiden går videre. Den røde linjen er bare gjennomsnittsprisen de siste 50 dagene, mens den blå linjen er gjennomsnittsprisen de siste 100 dagene. Nå som du forstår hva et glidende gjennomsnitt er, og hvordan det ser ut, kan du godt presentere en annen type glidende gjennomsnitt og undersøke hvordan det er forskjellig fra det tidligere nevnte enkle glidende gjennomsnittet. Det enkle glidende gjennomsnittet er ekstremt populært blant handelsfolk, men som alle tekniske indikatorer har det kritikere. Mange individer hevder at bruken av SMA er begrenset fordi hvert punkt i dataserien vektes det samme, uavhengig av hvor det forekommer i sekvensen. Kritikere hevder at de nyeste dataene er mer signifikante enn de eldre dataene, og bør ha større innflytelse på sluttresultatet. Som svar på denne kritikken begynte handelsmenn å gi mer vekt på nyere data, som siden har ført til oppfinnelsen av ulike typer nye gjennomsnitt, hvorav den mest populære er det eksponentielle glidende gjennomsnittet (EMA). (For videre lesing, se Grunnleggende om vektede bevegelige gjennomsnitt og hva som er forskjellen mellom en SMA og en EMA) Eksponentiell flytende gjennomsnitt Det eksponentielle glidende gjennomsnittet er en type bevegelige gjennomsnitt som gir mer vekt til de siste prisene i et forsøk på å gjøre det mer responsivt til ny informasjon. Å lære den noe kompliserte ligningen for å beregne en EMA kan være unødvendig for mange forhandlere, siden nesten alle kartleggingspakker gjør beregningene for deg. Men for deg matematiske geeks der ute, her er EMA-ligningen: Når du bruker formelen til å beregne det første punktet til EMA, kan det hende du merker at det ikke er noen verdi tilgjengelig for bruk som den forrige EMA. Dette lille problemet kan løses ved å starte beregningen med et enkelt glidende gjennomsnitt og fortsette videre med den ovennevnte formelen derfra. Vi har gitt deg et eksempelkart som inneholder virkelige eksempler på hvordan du kan beregne både et enkelt glidende gjennomsnitt og et eksponentielt glidende gjennomsnitt. Forskjellen mellom EMA og SMA Nå som du har en bedre forståelse av hvordan SMA og EMA beregnes, kan vi se på hvordan disse gjennomsnittene er forskjellige. Ved å se på beregningen av EMA, vil du legge merke til at det legges større vekt på de siste datapunktene, noe som gjør det til en type vektet gjennomsnitt. I figur 5 er antall tidsperioder som brukes i hvert gjennomsnitt identisk (15), men EMA reagerer raskere på de endrede prisene. Legg merke til hvordan EMA har en høyere verdi når prisen stiger, og faller raskere enn SMA når prisen senker. Denne responsen er den viktigste grunnen til at mange handelsmenn foretrekker å bruke EMA over SMA. Hva betyr de forskjellige dagene Gjennomsnittlig flytteverdi er en helt tilpassbar indikator, noe som betyr at brukeren fritt kan velge hvilken tidsramme de vil ha når man lager gjennomsnittet. De vanligste tidsperioder som brukes i bevegelige gjennomsnitt er 15, 20, 30, 50, 100 og 200 dager. Jo kortere tidsrammen som brukes til å skape gjennomsnittet, jo mer følsomt blir det for prisendringer. Jo lengre tidsrom, jo ​​mindre følsomt, eller mer utjevnet, vil gjennomsnittet være. Det er ingen riktig tidsramme som skal brukes når du oppretter dine bevegelige gjennomsnitt. Den beste måten å finne ut hvilken som passer best for deg, er å eksperimentere med en rekke forskjellige tidsperioder til du finner en som passer til din strategi. Flytte gjennomsnitt: Slik bruker du dem

No comments:

Post a Comment